高盐水*项目 反渗透膜
高盐水*项目对于高盐废水,由于缺乏技术、经济上的可行性与可靠性,大多数采取稀释外排方法。这种方法不但不能真正减少污染物的排放总量,而且造成了淡水的浪费,特别是含盐废水的排放,势必造成淡水水资源矿化和土壤碱化。与国外高盐废水“*”或“趋*”的脱盐技术水平相比,我国有较大差距。因此,如何开发经济有效的高盐废水脱盐处理工艺技术,促进高盐废水的资源化利用,也是解决水资源循环利用的瓶颈问题。化工生产中高盐废水的来源通常,对于废水生化处理而言,高盐废水是指含有机物和至少总溶解固体(TDS)的质量分数大于3.5%的废水。因为在这类废水中,除了含有有机污染物,还含有大量可溶性的无机盐,如Cl−、Na+、SO42−、Ca2+ 等。所以,这类废水一般是生化处理的极限。据报道,在国外已有采用特殊驯养的耐盐嗜盐菌处理含盐15%的含酚废水;在国内,也有关于采用嗜盐菌可以处理含盐5%废水的报道。这类废水除了海水淡化产生外,其他主要来源于以下领域①化工生产,化学反应不*或化学反应副产物,尤其染料、等化工产品生产过程中产生的大量高COD、高盐有毒废水;②废水处理,在废水处理过程中,水处理剂及酸、碱的加入带来的矿化,以及大部分“淡”水回收而产生的浓缩液,都会增加可溶性盐类的浓度,形成所谓的难于生化处理的“高盐度废水”。可见,这类含盐废水已经较普通废水对环境有更大的污染性。
自 20世纪 90 年代以来,随着我国纺织工业的迅猛发展,印染行业规模迅速扩大,染料的生产与使用量越来越大。由此,产生大量的高 COD、高色度、高毒性、高盐度、低B/C 的染料废水。据统计,2009 年印染行业所产生的染料废水总量已达 24.3亿吨,占纺织工业废水总排放量的 80%以上。该种染料废水具有的“四高一低”的特点,并且与使用染料的种类有关。与此同时,在染料生产中,排放废水中盐类的富集主要是由生产工艺和工艺助剂的添加造成的。比如,在江苏某染料厂综合废水中,仅氯盐质量分数就高达60g/L。可见,如何高效处理高盐度、高污染度的印染废水,实现氯盐从达标水的分离,满足淡水资源的循环利用要求,已成为印染废水处理的难题。
除此之外,在其他化工生产过程中,也会有高盐废水产生。例如,氨碱法制备纯碱生产中,蒸氨处理后系统排放废水的可溶性盐含量一般可达15%~20%,其中大部分为 CaCl2、NaCl。在煤化工行业中,含盐废水经过热浓缩工艺后,外排的浓缩废水含盐量可达20%以上。对于化工过程中产生的高盐废水,由于来源于不同化工产品与生产工艺,高盐废水的性质也各异。因此,对于化工生产中直接产生的各种高盐废水,需要按照高盐废水的不同来源、性质进行分类并选择工艺处理。
2.碟管式反渗透(DTR0)技术+蒸发结晶技术处理高盐废水实现资源回收与*
2.1碟管式反渗透(DTR0)处理高盐水
*,反渗透膜技术是一种常用的脱盐技术。目前,适用于工业规模的反渗透膜,主要包括乙酸纤维素和聚酰胺膜,其盐截留率为 94%~97%。废水通过物化、生物等方法使废水达到排放标准。碟管式反渗透(DTRO)技术是一种高新反渗透技术,早始于德国,相对于卷式反渗透其耐高压、抗污染特点更加明显,即使在高浊度、高SDI值、高盐分、高COD的情况下,也能经济有效稳定运行,更加适应高盐废水的处理。国内主要应用于垃圾渗滤液与海水淡化、苦咸水淡化工程。DTRO虽然水处理效果,但因DTRO膜组件主要依赖进口,成本相对较高,山东烟台金正环保选用美国陶氏原材,采用德国加工设备实现了DTRO膜制造,明显降低该技术运营成本,使该技术得以在国内广泛推广。DTRO盐截留率为 98%~99.8%。
碟管式反渗透(DTRO)是一种*的膜分离设备。碟管式膜组件采用开放式流道,DT组件两导流盘直接距离为4mm,盘片表面有一定方式排列的凸点。
这种特殊的力学设计使处理液在压力作用下流经滤膜表面遇凸点碰撞时形成湍流,增加透过速率和自清洗功能,从而有效的避免了膜堵塞和浓差极化现象,成功的延长了膜片的使用寿命;清洗时也容易将膜片上的积垢洗净,保证碟管式膜组适用于处理高浑浊度和高含沙系数的废水,适应恶劣的进水条件。
DTRO膜组件具有特殊的流道设计形式,采用开放式流道,料液通过增压泵经进料口打入DTRO膜柱内,从导流盘与外壳之间的通道流到组件的另一端,在另一端法兰处,料液通过8个通道进入导流盘中被处理的液体以短的距离快速流经过滤膜,然后180度逆转到另一膜面,再从导流盘中心的槽口流入到下一个导流盘,从而在膜表面形成由导流盘圆周到圆中心,再到圆周,再到圆中心的双”S”形路线,浓缩液后从进料端法兰处流出。
高盐水*项目
实际成功案例展示如下:
烟台招远某高盐水废水*项目:
内蒙杭锦旗高盐废水*项目: